Image Editing Poisson Reconstruction

CVFX @ NTHU

7 May 2015

Poisson Reconstruction

- > Poisson Image Editing
 - > Patrick Perez, Michel Gangnet, and Andrew Blake
 - > SIGGRAPH 2003
- > Drag and Drop Pasting
 - > Jia *et al.,* SIGGRAPH 2006

cloning

seamless cloning

sources/destinations

Guided Interpolation

under the guidance of vector field **v**

interpolating the unknown scalar function *f*

Simple Interpolation

> Smoothness assumption

$$\min_{f} \int \int_{\Omega} \|\nabla f\|^2 \, dx \, dy \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega}$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]^T$$

Optimization

> Minimize the functional

$$\int \int_{\Omega} F(\nabla f) \, dx \, dy$$

where $F(\nabla f) = \|\nabla f\|^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2$

Calculus of Variations

Minimize a functional $I[f(x)] = \int_{a}^{b} F(f, \frac{df}{dx}, x) dx$

Minimize a functional $I[f(x)] = \int_a^b F(f, \frac{df}{dx}, x) dx$

$$f(x) \to f(x) + \alpha \eta(x)$$

 α is small and $\eta(x)$ arbitrary

if the functional is to be stationary, then we must have $\frac{dI}{d\alpha}|_{\alpha=0} = 0$ for all $\eta(x)$

$$I(\alpha) = \int_{a}^{b} F(f + \alpha \eta, f' + \alpha \eta', x) dx$$

= $I(0) + \alpha \int_{a}^{b} \left(\frac{\partial F}{\partial f} \eta + \frac{\partial F}{\partial f'} \eta' \right) dx + O(\alpha^{2})$
= 0

$$0 = \int_{a}^{b} \left(\frac{\partial F}{\partial f} \eta + \frac{\partial F}{\partial f'} \eta' \right) dx$$

$$= \frac{\partial F}{\partial f'} \eta \Big|_{a}^{b} + \int_{a}^{b} \left(\frac{\partial F}{\partial f} - \frac{d}{dx} \frac{\partial F}{\partial f'} \right) \eta dx$$

$$f(a)$$

$$f$$

integration by part

$$\int_{a}^{b} \frac{\partial F}{\partial f'} \eta' \, dx = \frac{\partial F}{\partial f'} \eta \Big|_{a}^{b} - \int_{a}^{b} \frac{d}{dx} \frac{\partial F}{\partial f'} \eta \, dx$$

9

Euler-Lagrange Equation

> Minimize the functional

$$\int \int_{\Omega} F(\nabla f) \, dx \, dy$$

where $F(\nabla f) = \|\nabla f\|^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2$

The solution *f* satisfies

$$\frac{\partial F}{\partial f} - \frac{d}{dx}\frac{\partial F}{\partial f_x} - \frac{d}{dy}\frac{\partial F}{\partial f_y} = 0$$

$$\frac{\partial F}{\partial f} - \frac{d}{dx}\frac{\partial F}{\partial f_x} - \frac{d}{dy}\frac{\partial F}{\partial f_y} = 0$$

$$F(\nabla f) = \|\nabla f\|^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = f_x^2 + f_y^2 \qquad \qquad f_x = \frac{\partial f}{\partial x}$$
$$\frac{\partial F}{\partial f} = 0 \qquad \frac{\partial F}{\partial f_x} = 2f_x \qquad \frac{\partial F}{\partial f_y} = 2f_y$$

$$-2\frac{d}{dx}f_x - 2\frac{d}{dy}f_y = 0$$

$$\frac{d^2f}{dx^2} + \frac{d^2f}{dy^2} = 0$$

Example: Let's Consider a 1D Case

> Minimize the functional

$$\int \int_{\Omega} F(y, y', x) \, dx$$

where
$$F(y, y', x) = F(y') = (y')^2 + 1$$

$$\frac{\partial F}{\partial f} - \frac{d}{dx}\frac{\partial F}{\partial f'} = 0$$

What does the solution f look like?

Simple Interpolation

> Smoothness assumption

$$\min_{f} \int \int_{\Omega} \|\nabla f\|^{2} \, dx \, dy \text{ with } f|_{\partial \Omega} = f^{*}|_{\partial \Omega}$$
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]^{T}$$

$$\frac{d^2f}{dx^2} + \frac{d^2f}{dy^2} = 0 \text{ over } \Omega \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

$$\square$$

$$\Delta f = 0 \text{ over } \Omega \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

Dirichlet boundary condition

Guidance Field

$$\min_f \int_{\Omega} \|\nabla f - \mathbf{v}\|^2 \, dx \, dy \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega}$$

$$\Delta f = \operatorname{div} \mathbf{v}$$
 over Ω with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

$$\mathbf{v} = [u, v]^T$$
 $\operatorname{div} \mathbf{v} = \nabla \cdot \mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$

$$\frac{\partial F}{\partial f} - \frac{d}{dx}\frac{\partial F}{\partial f_x} - \frac{d}{dy}\frac{\partial F}{\partial f_y} = 0$$

$$F(\nabla f) = \|\nabla f - \mathbf{v}\|^2 = \left(\frac{\partial f}{\partial x} - u\right)^2 + \left(\frac{\partial f}{\partial y} - v\right)^2 \qquad f_x = \frac{\partial f}{\partial x}$$
$$= (f_x - u)^2 + (f_y - v)^2 \qquad f_y = \frac{\partial f}{\partial y}$$

$$\frac{\partial F}{\partial f} = 0$$
 $\frac{\partial F}{\partial f_x} = 2(f_x - u)$ $\frac{\partial F}{\partial f_y} = 2(f_y - v)$

$$-2\frac{d}{dx}(f_x - u) - 2\frac{d}{dy}(f_y - v) = 0$$

$$\frac{d^2f}{dx^2} + \frac{d^2f}{dy^2} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \qquad \Box \Rightarrow \qquad \Delta f = \operatorname{div} \mathbf{v}$$

Conservative Guidance Field

 $\mathbf{v} = \nabla g$

$$\oint_C \mathbf{v} \cdot ds = 0$$
$$\int_{C_1} \mathbf{v} \cdot ds = \int_{C_2} \mathbf{v} \cdot ds$$

When the Guidance Field Is Conservative

$$\mathbf{v} =
abla g$$

 $f = g + \tilde{f}$ $ilde{f}$ is the correction funciton

 $\Delta f = \operatorname{div} \mathbf{v} \text{ over } \Omega \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$

 $\Delta f = \nabla \cdot \nabla g$ over Ω with $f|_{\partial \Omega} = f^*|_{\partial \Omega}$

 $\Delta(g+\tilde{f})=\Delta g \text{ over } \Omega \text{ with } (g+\tilde{f})|_{\partial\Omega}=f^*|_{\partial\Omega}$

 $\Delta \tilde{f} = 0$ over Ω with $\tilde{f}|_{\partial \Omega} = (f^* - g)|_{\partial \Omega}$

Discrete Poisson Equation

 $\partial \Omega = \{ b \in S \setminus \Omega : N_b \cap \Omega \neq \emptyset \}$

 $\min_{\{f_p, p \in \Omega\}} \sum_{(p,q) \cap \Omega \neq \emptyset} (f_p - f_q - v_{pq})^2, \text{ with } f_b = f_b^*, \text{ for all } b \in \partial \Omega$

$$v_{pq} = \mathbf{v}(\frac{p+q}{2}) \cdot \vec{pq}$$

Discrete Poisson Solver

$$\min_{\{f_p, p \in \Omega\}} \sum_{(p,q) \cap \Omega \neq \emptyset} (f_p - f_q - v_{pq})^2, \text{ with } f_b = f_b^*, \text{ for all } b \in \partial \Omega$$

for each
$$p$$
: $2 \sum_{(p,q)\cap\Omega\neq\emptyset} (f_p - f_q - v_{pq}) = 0$ $f_q = f_q^*$ if $q \in \partial\Omega$

Discrete Poisson Solver

for all
$$p \in \Omega$$
, $|N_p|f_p - \sum_{q \in N_p \cap \Omega} f_q = \sum_{q \in N_p \cap \partial \Omega} f_q^* + \sum_{q \in N_p} v_{pq}$

sparse (banded), symmetric linear system

$$|N_p|f_p - \sum_{q \in N_p} f_q = \sum_{q \in N_p} v_{pq}$$

Seamless Cloning

- > Importing gradients
 - $\mathbf{v} = \nabla g$ $\Delta f = \Delta g \text{ over } \Omega \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega}$
 - for all pairs (p,q), $v_{pq} = g_p g_q$ (finite difference)

source/destination

seamless cloning

Mixing Gradients

for all
$$\mathbf{x} \in \Omega$$
, $\mathbf{v}(\mathbf{x}) = \begin{cases} \nabla f^*(\mathbf{x}) & \text{if } |\nabla f^*(\mathbf{x})| > |\nabla g(\mathbf{x})|, \\ \nabla g(\mathbf{x}) & \text{otherwise.} \end{cases}$
 $v_{pq} = \begin{cases} f_p^* - f_q^* & \text{if } |f_p^* - f_q^*| > |g_p - g_q|, & \text{non-conservative} \\ g_p - g_q & \text{otherwise,} \end{cases}$

1

source

g

Texture Flattening

for all $\mathbf{x} \in \Omega$, $\mathbf{v}(\mathbf{x}) = M(\mathbf{x}) \nabla f^*(\mathbf{x})$ binary mask/edge detector

 $v_{pq} = \begin{cases} f_p - f_q & \text{if an edge lies between } p \text{ and } q, \\ 0 & \text{otherwise,} \end{cases}$

Local Illumination Change

$$\mathbf{v} = \alpha^{\beta} |\nabla f^*|^{-\beta} \nabla f^*$$

 $\beta = 0.2$.

$$\mathbf{v} = \left(\frac{0.2\langle \nabla f^* \rangle}{|\nabla f^*|}\right)^{0.2} \nabla f^*$$

Local Color Change

background de-colorization re-coloring

Image Stitching

> Levin *et al.*, ECCV 2004

Input image 1₁

Pasting of I_1 and I_2

Alpha Interpolation

$$\forall x \in \Omega, v(x) = \begin{cases} \nabla f^*(x) & \text{if } \|\nabla f^*(x)\| > \alpha \|\nabla g(x)\| \\ \alpha \nabla g(x) & \text{otherwise} \end{cases}$$

Leventhal et al.

Discussion

- > Fast enough for interactive editing
 - > 0.4s for a region of 60,000 pixels
 - > Gauss-Seidel method
- > Arbitrary shape

- > Automatic alignment?
- > Automatic deformation?

Poisson Reconstruction

- > Poisson Image Editing
 - Patrick Perez, Michel Gangnet, and Andrew Blake
 - > SIGGRAPH 2003
- > Drag and Drop Pasting
 - > Jia et al., SIGGRAPH 2006
 - » http://www.cse.cuhk.edu.hk/~leojia/all_project_webpag es/ddp/drag-and-drop_pasting.html
 - > Slides created by Jia *et al.*
 - » http://www.cse.cuhk.edu.hk/~leojia/all_project_webpag es/ddp/ddp_v3.ppt

> A case study

> A case study

 f_t

> A case study

> A case study

> The same example

-) Where is the optimal boundary $\partial \Omega$?
 - > Inside the user drawn region
 - > Outside the object of interest
- > How to optimize it?
 - > Minimum color variance

$$\min \sum_{p \in \partial \Omega} \left((f_t(p) - f_s(p)) - k \right)^2, \text{ s.t. } \partial \Omega \in \text{ blue}$$

$$E(\partial\Omega,k) = \sum_{p\in\partial\Omega} \left((f_t(p) - f_s(p)) - k \right)^2, \text{ s.t. } \partial\Omega \in \text{ blue}$$

-) $\partial \Omega$ and k are all unknowns
- > An iterative optimization
 - > Initialize $\partial \Omega$ as the user drawn boundary.
 -) Given new $\partial \Omega$, the optimal k is computed:

$$\frac{\partial E(\partial \Omega, k)}{\partial k} = 0$$
 Shortest path problem

-) Given new k, optimize the boundary $\partial \Omega$.
- > Repeat the previous two steps until convergence.

- In 2D graph, computing the shortest path between any two points: Dynamic Programming
- > Our problem is to compute a closed path

- > A shortest closed-path algorithm
 - > Breaking closed boundary

- > A shortest closed-path algorithm
 - > Breaking closed boundary

- > A shortest closed-path algorithm
 - > Breaking closed boundary

> A shortest closed-path algorithm

- > A shortest closed-path algorithm
 - > Computation complexity O(N)

> A shortest closed-path algorithm

- > A shortest closed-path algorithm
 - > Total computation complexity O(NM)

Boundary Optimization Discussion

- Optimality
 - Avoiding that the path twists around the cut by selecting the initial cut position.
- > How to select the initial cut?
 - > Making it short to reduce O(MN)
 - Passing smooth region

- The alpha blending and Poisson blending are two separated methods in previous work.
 - Alpha blending maintains fractional boundary but cannot modify the color of the source object.
 - Poisson blending can modify the color of the source object but only uses a binary boundary.
 - > They are integrated in our method.

 Fractional boundary is important in image composting:

- > Where to use the fractional values?
 - only the pixels where the optimized boundary is near the blue ribbon

- > Where to use the fractional values?
 - only the pixels where the optimized boundary is near the blue ribbon

fractional integration: the green region otherwise: the yellow region

- How to integrate the fractional values in Poisson blending?
 - > A blended guidance field

$$\nabla_x f(x,y) = f(x+1,y) - f(x,y)$$

$$v'_x(x,y) = \begin{cases} \nabla_x f_s(x,y), & (x,y), (x+1,y) \in \text{yellow};\\ \nabla_x (\alpha f_s + (1-\alpha)f_t), & (x,y), (x+1,y) \in \text{green};\\ 0, & \text{otherwise}. \end{cases}$$

- How to integrate the fractional values in Poisson blending?
 - > A blended guidance field

$$v'_x(x,y) = \begin{cases} \nabla_x f_s(x,y), & (x,y), (x+1,y) \in \text{yellow};\\ \frac{\nabla_x (\alpha f_s + (1-\alpha) f_t),}{0,} & (x,y), (x+1,y) \in \text{green};\\ & \text{otherwise}. \end{cases}$$

- How to integrate the fractional values in Poisson blending?
 - > A blended guidance field

$$v'_x(x,y) = \begin{cases} \nabla_x f_s(x,y), & (x,y), (x+1,y) \in \text{ yellow };\\ \nabla_x (\alpha f_s + (1-\alpha)f_t), & (x,y), (x+1,y) \in \text{ green };\\ 0, & \text{otherwise }. \end{cases}$$

> Final minimization:

$$\min_{f} \int_{p \in \Omega^*} \|\nabla f - v'\|^2 \, dp \text{ with } f|_{\partial \Omega^*} = f_t|_{\partial \Omega^*}$$

> Solving the corresponding Poisson equation.

Jia *et al.*

Alpha blending

Jia *et al.*

Poisson blending

Jia *et al.*

Alpha blending

Jia *et al.*

Poisson blending

Results

Results

Additional Assignment

> Image abstraction →
video tooning

心機掃瞄

- > Rolling Guidance Filter, Zhang et al.
 - http://www.cse.cuhk.edu.hk/leojia/projects/rollguidance/
- > Video tooning, Wang et al.
 - http://juew.org/publication/VideoTooningFinal.pdf

Rolling Guidance Filter

> Zhang et al., ECCV 2014

Algorithm 1 Rolling Guidance Using Bilateral Filter

Input: $I, \sigma_s, \sigma_r, N^{\text{iter}}$ Output: I^{new} 1: Initialize J^0 as a constant image 2: for t:= 1 to N^{iter} do 3: $J^t \leftarrow JointBilateral(I, J^{t-1}, \sigma_s, \sigma_r)$ {Input: I; Guidance: J^{t-1} } 4: end for 5: $I^{\text{new}} \leftarrow J^{N^{\text{iter}}}$